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The solution of many physical evolution equations can be expressed as an exponential of two or more
operators acting on initial data. Accurate solutions can be systematically derived by decomposing the expo-
nential in a product form. For time-reversible equations, such as the Hamilton or the Schrödinger equation, it
is immaterial whether or not the decomposition coefficients are positive. In fact, most symplectic algorithms
for solving classical dynamics contain some negative coefficients. For time-irreversible systems, such as the
Fokker-Planck equation or the quantum statistical propagator, only positive-coefficient decompositions, which
respect the time-irreversibility of the diffusion kernel, can yield practical algorithms. These positive time steps
only, forward decompositions, are a highly effective class of factorization algorithms. This work presents a
framework for understanding the structure of these algorithms. By a suitable representation of the factorization
coefficients, we show that specific error terms and order conditions can be solvedanalytically. Using this
framework, we can go beyond the Sheng-Suzuki theorem and derive a lower bound for the error coefficient
eVTV. By generalizing the framework perturbatively, we can further prove that it is not possible to have a
sixth-order forward algorithm by including only the commutatorfVTVg; [V,fT,Vg]. The pattern of these
higher-order forward algorithms is that in going from thes2ndth to thes2n+2dth order, one must include a
different commutatorfVT2n−1Vg in the decomposition process.
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I. INTRODUCTION

Many physical evolution equations, from classical me-
chanics f1–4g, electrodynamicsf5g, statistical mechanics
f6,7g to quantum mechanicsf8–10g, all have the form

] w

] t
= sT + Vdw, s1.1d

whereT andV are noncommuting operators. Such an equa-
tion can be solved iteratively via

wst + ed = eesT+Vdwstd, s1.2d

provided that one has a suitable approximation for the short
time evolution operatoreesT+Vd. Usually, eeT and eeV can be
solved exactly. By factorizingeesT+Vd to higher order in the
form

eesT+Vd = p
i=1

N

etieTevieV, s1.3d

one can solves1.1d accurately with excellent conservation
properties. Classically, each factorizations1.3d produces a
symplectic integrator, which exactly conserves all Poincaré
invariants. A vast literaturef1–3g exists on producing sym-
plectic integrators of the forms1.3d. Once a factorization
scheme is derived, it can be implemented specifically to
solve any particular evolution equation of the forms1.1d.

However, as one examines these factorization schemes
more closely, one is immediately struck by the fact that be-
yond second order, all such schemes contain some negative
coefficientsf1–3g ti andvi. Since the fundamental diffusion
kernel cannot be simulated or integrated backward in time,
none of these higher-order schemes can be applied totime-
irreversiblesystems. This lack of positive-coefficient decom-

positions beyond second order was noted and proved by
Shengf11g. Sheng showed that equations for determining the
third-order coefficients ins1.3d are incompatible if the coef-
ficients hti ,vij are assumed to be positive. This is a valuable
demonstration, but it shed no light on the cause of this in-
compatibility nor offered clues on how to overcome this de-
ficiency. Suzukif12g later proved that the incompatibility can
be viewed more geometrically. His proof tracked the coeffi-
cients of the operatorTTVandTVV in the product expansion
of s1.3d. If the expansion were correct to third order, then the
coefficients for both operators must be13! . The coefficient
condition for one corresponds to a hyperplane and the other,
a hypersphere. Suzuki then went on to show that for the
same set of positive coefficients, the hyperplane cannot in-
tersect the hypersphere and, therefore, no real solution is
possible.

The product forms1.3d has the general expansion

p
i=1

N

eti«Tevi«V = expseT«T + eV«V + eTV«2fT,Vg

+ eTTV«3
†T,fT,Vg‡ + eVTV«3

†V,fT,Vg‡ + ¯d
= e«HAs«d, s1.4d

where the last equality defines the approximate Hamiltonian
of the product decomposition. The goal of factorization is to
keepeT=eV=1 and forces all other error coefficients, such as
eTV,eTTV,eVTV, etc., to zero. By tracing the incompatibility
condition to error coefficients of specific operators, one can
identify which error term cannot be made to vanish. The
operatorTTV can only occur in[T,fT,Vg] andTVV only in
[V,fT,Vg]. Thus the incompatibility condition is equivalent
to the fact that for positive coefficientshti ,vij , eTTV andeVTV

cannot both be reduced to zero. To circumvent this, it is
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sufficient to force one error coefficient to zero and keep the
other commutator in the factorization process. Since in quan-
tum mechanics[V,fT,Vg] corresponds to a local function,
just like the potential, Suzukif13g suggested that one should
factorizee«sT+Vd in terms ofT,V, and [V,fT,Vg]. Following
up on this suggestion, Suzukif14g and Chinf15g have de-
rived fourth-order factorization algorithms with only positive
coefficients. Chin f15g also showed that, classically,
[V,fT,Vg] give rises to a force gradient exactly as first sug-
gested by Ruthf16g. Chin and collaborators have since abun-
dantly demonstrated the efficiency of these forward time-step
algorithms in solving both time-irreversiblef17–20g and
time-reversiblef4,9,10,15g dynamical problems. Janget al.
f21g have used these forward factorization schemes in doing
quantum statistical calculations and Omelyanet al. f22,23g
have produced an extensive collection of higher-order algo-
rithms sbut with negative coefficientsd based on this class of
fourth-order forward algorithms. Moreover, they have shown
that many higher-order algorithms can be derived much more
economically with the inclusion of the commutator
[V,fT,Vg].

An important question, therefore, arises: with the inclu-
sion of the operator[V,fT,Vg], can one produce forward
algorithms of sixth or higher order? It has been known for
some time, from our own workf10g, from the extensive
search of higher-order algorithms by Omelyanet al. f22,23g
and that of Blanes and Casasf24g, that the answer is prob-
ably no. If such a sixth-order algorithm existed, we would
have found it by now. What is lacking is a proof similar to
Suzuki’s, pointing out the key impediment and explaining
this lack of success. In this work, we show that for a sixth-
order decomposition with positive coefficients, it is the com-
mutator [V,fT,[T,fT,Vg]g] that cannot be made to vanish
and must be included. In order to prove this result we have
developed a formalism to analyze the structure of these for-
ward factorization schemes. By use of a suitable representa-
tion of the factorization coefficients, we show that linear or-
der conditions and quadratic error terms can both be solved
analytically. The resulting error term then makes it obvious
that it cannot vanish if the factorization coefficients are
purely positive. By use of this formalism we can go beyond
the Sheng-Suzuki theorem and derive a lower bound for the
magnitude of the error coefficienteVTV. By generalizing the
method to sixth order, we further prove the main result as
stated above. This analytical method of solving the order
conditions will allow us to analyze and classify factorization
algorithms in general.

In Sec. II we introduce our notations and illustrate our
method of solving the order condition analytically by giving
a constructive proof of the Sheng-Suzuki theorem. In Sec.
III, we discuss the conditions necessary for a sixth-order for-
ward algorithm. In Sec. IV we introduce a perturbative ap-
proach to study the sixth-order case and show that it is not
possible to have a forward sixth-order algorithm by includ-
ing only the commutator[V,fT,Vg]. In Sec. V we discuss the
pattern of higher-order forward algorithms. In Sec. VI, we
assess the feasibility of implementing sixth order algorithms.
In Sec. VII, we summarize our conclusions and suggest di-
rections for future research. The Appendix contains details of

how to reduce a general quadratic error coefficient to a mul-
tidiagonal form.

II. A CONSTRUCTIVE PROOF OF THE SHENG-SUZUKI
THEOREM

In Suzuki’s prooff12g, without explicitly computingeTTV
andeVTV, he showed that both cannot be zero. Here, we show
that by enforcingeTV=0 and eTTV=0, we can compute a
lower bound foreVTV analytically and show that it cannot
vanish for a set of positivehtij. This determination of a lower
bound for eVTV goes beyond the Sheng-Suzuki theorem in
providing a more detailed understanding of all fourth-order
forward algroithms.

The first step of our approach is to compute the error
coefficientseTV,eTTV,eVTV, etc., in terms of the factorization
coefficientshti ,vij. This can be done as follows. The left-
hand side ofs1.4d can be expanded as

e«t1Te«v1V
¯ e«tNTe«vNV = 1 +«So

i=1

N

tiDT + «So
i=1

N

viDV + ¯ .

s2.1d

Fixing eT=eV=1, the right-hand side ofs1.4d can likewise be
expanded

e«HAs«d = 1 +«sT + Vd + 1
2«2sT + Vd2 + «2eTVfT,Vg

+ «3eVTV†V,fT,Vg‡ + «3eTTV†T,fT,Vg‡

+ 1
2«3eTVhsT + VdfT,Vg + fT,VgsT + Vdj

+ 1
3!«

3sT + Vd3 + ¯ . s2.2d

Matching the first-order terms in« gives the primary con-
straints

o
i=1

N

ti = 1 ando
i=1

N

vi = 1. s2.3d

To determine the other error coefficients, we focus on a par-
ticular operator ins2.2d whose coefficient containseTV,eTTV,
or eVTV and match that operator’s coefficients in the expan-
sion of s2.1d. For example, in the«2 terms ofs2.2d, the co-
efficient of the operatorTV is s 1

2 +eTVd. Equating this to the
coefficients ofTV from s2.1d gives

1

2
+ eTV = o

i=1

N

sivi , s2.4d

where we have introduced the variable

si = o
j=1

i

t j . s2.5d

Alternatively, the same coefficient can also be expressed as

1

2
+ eVT = o

i=1

N

tiui , s2.6d

where
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ui = o
j=i

N

v j . s2.7d

It turns out thatsi andui are our fundamental variables, the
coefficientsti andvi arebackwardand forward finite differ-
ences ofsi andui,

ti = si − si−1 ; ¹si, vi = ui − ui+1 ; − ¹ui . s2.8d

The resultss2.4d and s2.6d are equivalent by virtue of the
“partial summation” identity

o
i=1

N

¹siui = − o
i=1

N

siDui . s2.9d

sNote thats0=0 anduN+1=0.d In the following, we will use
the backward finite difference operator extensively:

¹si
n = si

n − si−1
n , s2.10d

with property

o
i=1

N

¹si
n = sN

n = 1.

Matching the coefficients of operatorsTTV andTVV gives

1

3!
+

1

2
eTV + eTTV=

1

2o
i=1

N

si
2vi =

1

2o
i=1

N

¹si
2ui , s2.11d

1

3!
+

1

2
eTV − eTVT=

1

2o
i=1

N

¹siui
2. s2.12d

The error coefficienteVTV can be tracked directly by the op-
eratorVTV. The coefficient for the operatorVTV is quadratic
in vi but not diagonal. This is more difficult to deal with than
TVV’s coefficient. Nevertheless, we show in the Appendix
that VTV’s coefficient can be diagonalized by a systematic
procedure to yield the same constraint equation ass2.12d.

In order to have a fourth-order algorithm, aside from the
primary constraintss2.3d, one must requireeTV=0,eTTV=0,
and eVTV=0. For a symmetric product form such thatt1=0
and vi =vN−i+1,ti+1= tN−i+1, or vN=0 and vi =vN−i ,ti = tN−i+1,
one has

e−«HAs−«de«HAs«d = 1. s2.13d

This implies thatHAs«d must be an even function of«, and
eTV=0 is automatic. The vanishing of all odd order errors in
HAs«d implies that we must have

1

s2n − 1d! oi=1

N

¹si
2n−1ui =

1

s2nd!
, s2.14d

ensuring thatT2n−1V has the correct expansion coefficient. It
is cumbersome to deal with symmetric coefficients directly;
it is much easier to use the general forms1.3d and to invoke
s2.14d when symmetric factorization is assumed.

The next step in our strategy is to compute a lower bound
for the magnitude ofeVTV, after satisfying constraintseTV
=0 andeTTV=0. We view the latter two constraints

o
i=1

N

¹siui =
1

2
, s2.15d

o
i=1

N

¹si
2ui =

1

3
, s2.16d

as constraints onhuij for given a set ofhtij coefficients. For
positive htij, the right-hand side ofs2.12d is a positive-
definite quadratic form inui. Its lower bound can be deter-
mined by the method of constrained minimization using
Lagrange multipliers. Minimizing

F =
1

2o
i=1

N

¹siui
2 − l1So

i=1

N

¹siui −
1

2
D − l2So

i=1

N

¹si
2ui −

1

3
D

s2.17d

gives

ui = l1
¹si

¹si
+ l2

¹si
2

¹si
= l1 + l2ssi + si−1d. s2.18d

Imposings2.15d and s2.16d determinesl1 andl2,

l1 + l2 = 1
2 , s2.19d

l1 + l2 + gl2 = 1
3 , s2.20d

whereg defined by

o
i=1

N
¹si

2¹si
2

¹si
= 1 +g, s2.21d

is given by

g = o
i=1

N

sisi−1ssi − si−1d. s2.22d

By substituting insisi−1=fsi
2+si−1

2 −ssi −si−1d2g /2, one discov-
ers that

g = − 1
2g + 1

2s1 − dgd,

and therefore

g =
1

3
s1 − dgd, wheredg = o

i=1

N

ti
3. s2.23d

The factor 1
3 is the continuum limitsN→`d of g when the

sum is replaced by the integrale0
1s2ds. The evaluation of

general sums of the forms2.22d will be further discussed
below. This exact form forg obviated the need to determine
g’s upper bound as it is done originally in the work of Suzuki
f12g, and in the more recent work on symplectic correctors
f7g. With l1 andl2 known, the minimium ofF is given by

F =
1

2
sl1 + l2d2 +

1

2
gl2

2 =
1

4
+

1

72g
=

1

6
+

1

24

dg

s1 − dgd
,

s2.24d

and therefore

STRUCTURE OF POSITIVE DECOMPOSITIONS OF… PHYSICAL REVIEW E 71, 016703s2005d

016703-3



eVTVø −
1

24

dg

s1 − dgd
. s2.25d

This implies that, first,eVTV must be negative. Second, its
magnitude is

ueVTVu ù
1

24

dg

s1 − dgd
. s2.26d

The Sheng-Suzuki theorem now follows as a simple corol-
lary. If all the ti’s are positive, theneVTV cannot vanish be-
cause its lower bounds2.26d, which depends ondg as given
by s2.23d, cannot vanish. The only way to achieve a fourth-
order forward algorithm is to keep the commutator
[V,fT,Vg] with coefficienteVTV, but move it to the left-hand
side ofs1.4d. This means that for all such fourth-order algo-
rithms, the sum of factorization coefficients of all the
[V,fT,Vg] terms must be positive. All such fourth-order al-
gorithms are characterized by their respective values ofeVTV
and how well they saturate the lower bounds2.26d. Note that
in deriving this lower bound, we did not need to incorporate
the primary constraintsu1=1.

A very different “elementary” proof of the Sheng-Suzuki
result has been offered by Blanes and Casaf24g. Our work is
more precise in demonstrating that, not only caneVTV not
vanish, it has a lower bounds2.26d determined only byhtij.

Note also thatvi =ui −ui+1 and s2.18d implies that

vi = l2ssi−1 − si+1d =
1

2

sti + ti+1d
s1 − dgd

. s2.27d

Thus, if one insists thateVTV be zero, thendg can be zero
only if at least oneti is negative such thatsti + ti+1d or sti
+ ti−1d remains negative. Equations2.27d then implies that its
adjacent values ofvi or vi−1 must also be negative. Thus a
fourth-order factorization without keeping any additional op-
erator, such as[V,fT,Vg], must have at least one pair of
negative ti,vi coefficients. This result was first proved by
Goldman and Kaperf25g. This simpler proof follows the idea
of Blanes and Casaf24g.

III. THE SIXTH-ORDER CASE

By incorporating the potential-like operator[V,fT,Vg],
many familiesf10,22,23g of fourth-order forward algorithms
have been found. They are not only indispensable for solving
time-irreversible problemsf17–20g; but they are also supe-
rior to existing fourth-order algorithms in solving time-
reversible classicalf4,15,22,23g and quantumf9,10g dynami-
cal problems. It is therefore of great interest to determine
whether there exist practical forward algorithms of even
higher order. We show in this section that sixth-order for-
ward algorithms requires the inclusion of the commutator
[V,fT,[T,fT,Vg]g]. The inclusion of [V,fT,Vg], which
makes possible fourth-order forward algorithms, is insuffi-
cient to guarantee a sixth-order forward algorithm. In gen-
eral, if F2ns«d is a 2nth order forward decomposition of
e«sT+Vd, then F2n+2s«d would require the inclusion of a new
operator not previously included in the construction of
F2ns«d. We have proved the case ofn=1 in Sec. II. The new
operator is

V1 ; †V,fT,Vg‡. s3.1d

Consider now the casen=2. In the following discussion,
we will use the condensed bracket notation:fV2T3Vg
;fV,[V,fT,[T,fT,Vg]g]g, etc. We have shown in Sec. II
that, for positiveti, with ui satisfying constraintss2.15d and
s2.16d, we can factorizee«sT+Vd up to the form

p
i=1

N

eti«Tevi«V

= expF«ST + V + eVTV«2fVTVg + «4o
i=1

4

eiQi + Os«6dDG ,

s3.2d

whereeVTV cannot be made to vanish, andQi are four inde-
pendent operators described below. There is one error opera-
tor fTVg in first order; two error operators,fTTVg and
fVTVg, in second order; four operators,
fTTTVg ,fVTTVg ,fTVTVg, and fVVTVg, in third order; and
eight operators, fTTTTVg ,fVTTTVg ,fTVTTVg ,fVVTTVg ,
fTTVTVg ,fVTVTVg ,fTVVTVg, and fVVVTVg, in fourth or-
der. These error operators are results of concatenatingT and
V with lower-order operators on the left. In each order, not
all the operators are independent. For example, settingC
=fABg in the Jacobi identity

fABCg + fBCAg + fCABg = 0,

gives fABCg=fBACg and therefore

fABABg = fBAABg.

For the case wherefVTVg commutes withV we also have
fVnVTVg=0. Hence there are only two independent operators
fTTTVg ,fTVTVg in third order and four operators
fTTTTVg ,fVTTTVg ,fTTVTVg ,fVTVTVg in fourth order. The
last two are justfTTV1g andfVTV1g, which resemble second-
order errors for a new potentialV1. To have a sixth-order
algorithm, one must eliminate these four error terms. Since
fTTV1g and fVTV1g are linear inV1, they can always be
eliminated by including a sufficient number ofV1 operators
in the factorization process. The remaining error termsfT4Vg
andfVT3Vg are unaffected byV1 and canonly be eliminated
by the choice of coefficientshti ,vij. Thus we can apply our
previous strategy of dealingonly with coefficientshti ,vij but
now computing the error coefficienteVT3V explicitly.

A careful reexamination of our proof for the Sheng-
Suzuki theorem shows that we have proved more than that is
required. The minimization procedure produces a lower
bound foreVTV, whereas the Sheng-Suzuki theorem only re-
quires thateVTV not be zero. The expansions2.18d merely
served as a vehicle for demonstrating that, for anyhuij satis-
fying s2.15d and s2.16d, eVTV cannot vanish for positivehtij.
We do not really need to minimize anything or to determine
an actual lower bound. This suggests a simple strategy for
proving the sixth-order case. It is sufficient to show that
eVT3V cannot vanish for any set ofhuij, satisfying higher-
order constraints.
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IV. PROVING THE SIXTH-ORDER CASE

As discussed in Sec. III, for a sixth-order algorithm, a
symmetric factorization must satisfy, in addition tos2.15d
and s2.16d, the constraints2.14d for n=2,

o
i=1

N

¹si
3ui =

1

4
. s4.1d

Also, since the operatorT4V uniquely tracks the commutator
fT4Vg, the error coefficienteT4V will vanish if the expansion
coefficient ofT4V is 1

5! . This means that factorization coeffi-
cientshti ,vij must also obey

o
i=1

N

¹si
4ui =

1

5
. s4.2d

These four constraintss2.15d, s2.16d, s4.1d, ands4.2d can be
satisfied by the expansion,

ui = l1 + l2
¹si

2

¹si
+ l3

¹si
3

¹si
+ l4

¹si
4

¹si
. s4.3d

We must now demonstrate that in this case,eVT3V cannot
vanish if htij are all positive. Whenui is expanded vias4.3d,
the four constraintss2.15d, s2.16d, s4.1d, and s4.2d produce
the following set of four linear equations form=1 to 4,

o
n=1

4

Gmnln =
1

m+ 1
. s4.4d

The matrixGmn is given by

Gmn= o
i=1

N
¹si

m¹si
n

¹si
= 1 +o

i=1

N

sisi−1
¹si

m−1¹si
n−1

¹si
; 1 + gmn,

s4.5d

where we have used the identity

¹si
m¹si

n

¹si
= ¹si

m+n−1 + sisi−1
¹si

m−1¹si
n−1

¹si
s4.6d

to define the reduced symmetric matrixgmn. Since G1n
=Gn1=1 sand, hence,g1n=gn1=0d, we can subtract the first
constraint equation

l1 + l2 + l3 + l4 = 1
2 s4.7d

from the other three and reduce the system down to three
equations form=2 to 4,

o
n=2

4

gmnln =
1

m+ 1
−

1

2
. s4.8d

By writing si =si−1/2+ 1
2¹si and si−1=si−1/2− 1

2¹si where
si−1/2= 1

2ssi +si−1d, we can systematically expand

¹si
n = Ssi−1/2 +

1

2
¹siDn

− Ssi−1/2 −
1

2
¹siDn

=
n!

1 ! sn − 1d!
si−1/2

n−1 s¹sid +
n!

3 ! sn − 3d ! 22si−1/2
n−3 s¹sid3

+ ¯ .

When each summant¹si
m¹si

n/¹si is expanded and compared
with the similarly expanded integral

E
si−1

si

mnsm+n−2ds=
mn

m+ n − 1
¹si

m+n−1,

we deduce that

Gmn=
mn

m+ n − 1
−

1

12
mnsm− 1dsn − 1d

3Ho
i=1

N

si−1/2
m+n−4s¹sid3 + A5o

i=1

N

si−1/2
m+n−6s¹sid5 + ¯J ,

s4.9d

with

A5 = 1
120fsm+ n − 4d2 + sm− 2ds2m− 7d + sn − 2ds2n − 7dg.

The constant part of the matrix is the continuum limitsN
→`d of the sum, which is the integral

E
0

1

mnsm+n−2ds=
mn

m+ n − 1
.

We will denote this constant part of the matrix asGmn
0 . The

corresponding continuum part ofgmn is gmn
0 =Gmn

0 −1. The
remaining finite parts ofGmn in s4.9d, which depends explic-
itly on si, will be denoted asdGmn. Sincegmn differs from
Gmn only by a constant, its finite partdgmn is the same as that
of Gmn, i.e., dgmn=dGmn. By repeated applications of the
identity s4.6d, one can reducegmn to a sum of terms of the
form

ksl,nd = o
i=1

N

ssisi−1dl¹si
n. s4.10d

Since the explicit form ofgmn is known vias4.9d, these func-
tions are not particularly useful as calculational tools. How-
ever, they are very useful in quickly identifying the matrix
element ofgmn when doing analytical calculations. For later
reference, we list somegmn’s in terms ofksl ,nd as follows:

g22 = ks1,1d,

g23 = ks1,2d,

g24 = ks1,3d,

g32 = ks1,3d + ks2,1d,

g33 = ks1,4d + ks2,2d,
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g34 = ks1,5d + ks2,3d + ks1,3d. s4.11d

Note thatg22 is theg function of the last section. From the
general formulas4.9d, one finds indeed thatg22

0 = 1
3 and

dg22 = −
1

3o
i=1

N

s¹sid3 = −
1

3
dg. s4.12d

If we only keep the continuum matrixgmn
0 in s4.8d

1
1
3

1
2

3
5

1
2

4
5 1

3
5 1 9

7

21l2

l3

l4
2 = 1 − 1

6

− 1
4

− 3
10

2 ,

the solution is trivial:l2=−1
2 ,l3=0,l4=0. This suggests that

we should also expand eachli into its continuum and finite
part: l2=−1

2 +dl2,l3=dl3,l4=dl4. For our purpose, it is
enough to keep the leading finite-size correction term, i.e.,
we can neglect the terms of the formdgmndlk. In this case,
we just have

1
1
3

1
2

3
5

1
2

4
5 1

3
5 1 9

7

21dl2

dl3

dl4
2 = 1

1
2dg22
1
2dg23
1
2dg24

2 . s4.13d

We do not need to solve eachdlk explicitly; we only need to
know that they are proportional todg2n. Since l1+l2+l3

+l4= 1
2, this also implies thatl1=1+dl1 with

dl1 + dl2 + dl3 + dl4 = 0. s4.14d

The above discussion suggests that one should also sepa-
rateui into its continuum and finite parts,

ui = S1 −
1

2

¹si
2

¹si
D + dui . s4.15d

The constraints onui now translate into constraints ondui

o
i=1

N

¹si
ndui =

1

n + 1
− o

i=1

N

¹si
nS1 −

1

2

¹si
2

¹si
D

=
1

n + 1
− S1 −

1

2
G2nD =

1

2
dg2n. s4.16d

Recall that sinceg1n=gn1=0, we also havedgn1=dg1n=0.
The above constraints fordui are exact. We have not yet
invoked any particular representation fordui.

To illustrate how this formalism will be used, let us re-
compute the quadratic form of the last section

o
i=1

N

¹siui
2 = o

i=1

N

¹siFS1 −
1

2

¹si
2

¹si
D + duiG2

=
1

4o
i=1

N
¹si

2¹si
2

¹si
+ 2o

i=1

N

¹sidui − o
i=1

N

¹si
2dui + Osdui

2d

s4.17d

=
1

4
G22 −

1

2
dg22 =

1

3
−

1

4
dg22 =

1

3
+

1

12
dg. s4.18d

This then implies that

eVTV= −
1

24oi=1

N

ti
3. s4.19d

The first key observation is Eq.s4.17d; to leading order in
dg2n, this quadratic form only depends on the first two con-
straints ondui. Its leading finite part is unchanged by addi-
tional, higher-order constraints ondui; that is, dui can be
very general. By inspection,eVTV above cannot vanish for
positive htij. Thus this leading-order calculation, while not
sufficient to determine the exact lower bound foreVTV, is
sufficient to show thateVTV cannot vanish, and thus proves
the Sheng-Suzuki theorem.

Second, ifdui were to be represented as

dui = dl2S¹si
2

¹si
− 1D + dl3S¹si

3

¹si
− 1D + dl4S¹si

4

¹si
− 1D ,

s4.20d

then in order for the constraintss4.16d to determinedlk to
the same leading order indg2n as in s4.13d, it is enough to
compute only the constantscontinuumd part of any sums
multiplying dlk. This implies that we may replace any such
sum by its integral or by any other sum having the same
integral.Thus for any sum multiplyingdui, we may replace it
by another sum having the same integral. This crucial sim-
plification makes it unnecessary to solve for eachlk explic-
itly.

To compute the error coefficienteVT3V, one must use an
operator that tracks the commutatorfVT3Vg uniquely. The
analogous operatorT3V2, whose expansion coefficient is easy
to compute, is no longer suitable. LetCT3V2 denote its expan-
sion coefficient in terms ofhti ,vij from the left-hand side of
s3.2d. By matching the same operator’s expansion coefficient
from the right-hand side, one findsf26g

CT3V2 = 1
5! − 1

3!eVTV− eT2VTV− eVT3V. s4.21d

It is difficult to disentangleeVT3V from the contaminating
effects of eVTV and eT2VTV. The three operators that track
fVT3Vg uniquely areVT3V,VT2VT, and TVT2V. We choose
the symmetric choiceVT3V, whose coefficient is related to
eVT3V by

CVT3V = 1
5! + 2eVT3V. s4.22d

From the left-hand side ofs3.2d, one deduces

CVT3V =
1

3! oi=1

N−1

vi o
j=i+1

N

ssj − sid3v j . s4.23d

This quadratic form inhvij is difficult to work with because
it is not diagonal inui or some other variable. In the Appen-
dix, we show that it can be simplified to the following bidi-
agonal form,
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CVT3V =
1

3!
S3o

i=1

N

¹sizi
2 − o

i=1

N

¹si
3ui

2 −
1

4
D , s4.24d

wherezi is defined by

zi = o
j=i

N

v jsj . s4.25d

The required coefficienteVT3V can now be computed from

eVT3V =
1

12
S3o

i=1

N

¹sizi
2 − o

i=1

N

¹si
3ui

2 −
3

10
D . s4.26d

The quadratic form involvingui
2 is

o
i=1

N

¹si
3ui

2 = o
i=1

N

¹si
3S1 −

1

2

¹si
2

¹si
D2

+ 2o
i=1

N

¹si
3dui −

3

2o
i=1

N

¹si
4dui

+ Osdui
2d s4.27d

=
3

4
− G32 +

1

4
sG33 + G24d + dg23 −

3

4
dg24

=
1

10
+

1

4
dg33 −

1

2
dg24. s4.28d

In s4.27d, we have replaced the sum involving¹si
3¹si

2/¹si

by its integral equivalent32¹si
4. Also, we have used the iden-

tity

¹si
3

¹si
S¹si

2¹si
2

¹si
D =

¹si
3¹si

3

¹si
+

¹si
4¹si

2

¹si
− ¹si

5.

Given the expansions4.3d for ui, we can deduce the cor-
responding expansion forzi. From s4.25d, we can rewritezi
as

zi = uisi + o
j=i+1

N

uj¹sj . s4.29d

For ui =ln¹si
n/¹si, we have

zi = lnF¹si
n

¹si
si + s1 − si

ndG,

= lnFSsi
n−1 + si−1

¹si
n−1

¹si
Dsi + s1 − si

ndG,

= lnF1 + sisi−1
¹si

n−1

¹si
G . s4.30d

Hence corresponding tos4.3d, zi has the expansion

zi = l1 + l2s1 + sisi−1d + l3S1 + sisi−1
¹si

2

¹si
D

+ l4S1 + sisi−1
¹si

3

¹si
D . s4.31d

One can check that this form forzi satisfies the four con-
straints s2.15d, s2.16d, s4.1d, and s4.2d when they are ex-
pressed in terms ofzi

z1 = l1 + l2 + l3 + l4 = 1
2 ,

and form=1 to 3,

o
i=1

N

¹si
mzi =

1

m+ 2
. s4.32d

The identitys4.6d is needed to show thats4.32d is equivalent
to the last three constraint equations forui. As in the case of
ui, we can writezi in the form

zi = 1
2s1 − sisi−1d + dzi s4.33d

and transfer the last three constraints onzi to dzi,

o
i=1

N

¹si
n−1dzi =

1

2
dg2n. s4.34d

The quadratic form forzi is then

o
i=1

N

¹sizi
2 =

1

4o
i=1

N

¹sis1 − sisi−1d2 + o
i=1

N

¹sidzi

− o
i=1

N

¹sissisi−1ddzi + Osdzi
2d

=
1

4
−

1

2
ks1,1d +

1

4
ks2,1d +

1

2
dg22 −

1

3o
i=1

N

¹si
3dzi

=
1

4
−

1

2
g22 +

1

4
sg33 − g24d +

1

2
dg22 −

1

6
dg24

=
2

15
+

1

4
dg33 −

5

12
dg24. s4.35d

We have again replaced the sum involving¹sissisi−1d by its
integral equivalent13¹si

3 and useds4.11d to express the re-
quired sum in terms ofgmn’s. Thus the bidiagonal form is

3o
i=1

N

¹sizi
2 − o

i=1

N

¹si
3ui

2 =
3

10
+

1

4
s2dg33 − 3dg24d.

From s4.9d we find

dg33 = − 3o
i=1

N

si−1/2
2 s¹sid3 −

1

20oi=1

N

s¹sid5,

dg24 = − 2o
i=1

N

si−1/2
2 s¹sid3 −

1

10oi=1

N

s¹sid5, s4.36d

and therefore, finally,

eVT3V =
1

240oi=1

N

s¹sid5 =
1

240oi=1

N

ti
5. s4.37d

This is remarkably similar tos4.19d. Thus if htij are all posi-
tive, theneVT3V cannot vanish. No sixth-order positive factor-
ization scheme is possible without including the commutator
V3=fVT3Vg.
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V. BEYOND SIXTH ORDER

In Sec. II, we have shown that in order to have a fourth-
order forward algorithm, one must include the commutator
V1=fVTVg in the factorization process. In Sec. IV, we have
proved that in order to have a sixth-order forward algorithm
one must include, in addition toV1, the commutatorV3
=fVT3Vg. By repeating the same argument, it is not difficult
to discern the pattern of higher-order forward algorithms. In
going from thes2ndth to thes2n+2dth order, one must add a
new commutator

V2n−1 = fVT2n−1Vg

to the factorization process. A proof of this general result is a
straightforward generalization of our approach in Sec. IV, but
technically much more involved. For example, to prove the
eighth-order case, we must trackeVT5V uniquely via the op-
eratorVT5V’s coefficient given byS5/5!, whereS5, as shown
in the Appendix, is tridiagonal inui ,zi, and

yi = o
j=i

N

v jsj
2.

One then has to work out the expansion foryi as in the case
of zi. Moreover, sinceeVT5V is anticipated to be~oi=1

N s¹sid7,
one can no longer ignore the contribution of ordersduid2

~ foi=1
N s¹sid3g2. Thus the current formalism, while powerful

in determiningeVTV variationally andeVT3V perturbatively, is
too demanding for the general case. To prove such a general
result, one must find a less explicit approach.

VI. SIXTH-ORDER ALGORITHMS

Now that the pattern of higher-order forward factoriza-
tions is known, we will consider the practical issue of
whether a sixth-order algorithm is implementable. Just as we
have denoted the factorization coefficients associated withT
andV as ti andvi, we will denote in this section, the coeffi-
cients associated with commutatorV1 and V3 by ui and wi.
For a symmetric sixth-order algorithm, we must satisfy the
two primary constraintss2.3d, the vanishing of the error co-
efficients of two second-order commutatorsV1 and fTTVg,
and four fourth-order commutatorsfTTTTVg ,fVTTTVg ,
fTTV1g, and fVTV1g. Because the error coefficients for
V1,fTTV1g, and fVTV1g are linear inui, they can always be
forced to zero by threeui’s. Likewise, sincefTTTTVg is lin-
ear in vi, its coefficient can be made zero and the primary
constraint be satisfied with twovi’s. The primary constraint
on ti and the quadratic constraint onti due tofTTVg can also
be satisfied with twoti’s. Thus a minimal sixth-order forward
algorithm is

TA
s6dsed ; e«5w1V3e«u2V1e«t2Te«sv1V+«2u1V1de«t1T

3e«sv0V+«2u0V1de«t1Te«sv1V+«2u1V1de«t2Te«u2V1e«5w1V3

s6.1d

with

v0 = 4
9, v1 = 5

18, t1 = 1
2
Î3

5, t2 = 1
2 − 1

2
Î3

5 , s6.2d

u0 = 7
60 − 5

54
Î5

3, u1 = − 1
48 + 5

216
Î5

3, u2 = 1
240 − 1

144
Î5

3,

s6.3d

and

w1 = − 7Î15−27
12960 . s6.4d

The coefficient offTTVg can be eliminated more simply by
an additionalv2. In this case, we can minimize the coeffi-
cient w1 neart2=1/5, yielding

TB
s6dsed ; ¯ e«sv0V+«2u0V1de«t1Te«sv1V+«2u1V1d

3e«t2Te«sv2V+«2u2V1de«5w1V3, s6.5d

v0 = 8
27, v1 = 125

432, v2 = 1
16, t1 = 3

10, t2 = 1
5 , s6.6d

u0 = 3121
1710720, u1 = 1145

2737152, u2 = 409
1520640, w1 = − 1

414720.

s6.7d

Since the factorization is symmetric, we only listed operators
from the center to the right.

Fourth-order forward algorithms are practical because it is
relatively easy to computeV1. For the standard classical
Hamiltonian

H = 1
2pipi + Usqid,

the operatorsT andV are just

T = pi
]

] qi
andV = Fi

]

] pi
,

whereFi =−Ui =−]U /]qi. The commutatorV1 is simply

V1 = fVTVg = 2UiUij
]

] pj
= ¹ jsFiFid

]

] pj
.

Since this is just like the operatorV with a modified force, it
can simply be combined withV. By contrast,V3 is of the
form

V3 = fVT3Vg = 3pipjsUlUlijk + Ulij Ulkd
]

] pk
− 6piUjUijk

]

] qk

s6.8d

and is more complicated than the original operator problem
T+V we seek to solve. Thus in most cases, it seems difficult
to implement a general sixth-order forward algorithm. This
would make fourth-order forward algorithms unique. There
are no easy higher generalizations. However, before we dis-
miss sixth-order algorithms out of hand, we note that for the
harmonic oscillator,V3=0 and sixth-order forward algo-
rithms certainly exist.fFor the harmonic oscillator, there are
many sixth-order forward algorithms much simpler than
s6.1d.g Second, there may be ways of constructing the com-
mutator V3 indirectly rather than by direct evaluation. For
example, the commutator
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fT,Vg = − piUij
]

] pj
+ Uj

]

] qj

has the same sort of complexicity asV3, but e«4fT,Vg can be
approximated by products ofevi«

2Veti«
2T sSee Ref.f7gd. Some

coefficientsti in this approximation must be negative, how-
ever, because they are of order«2 and can be combined ju-
diciously with existing operatorT of order « such that the
overall coefficient of theT operator is positive for suffi-
ciently small«. There may exist similar ways of approximat-
ing e«5w1V3. Thus until a simpler way of evaluatingV3 is
found, fourth-order algorithms are the only higher-order
practical forward algorithms.

VII. CONCLUSIONS

In this work, we have presented a framework for analyz-
ing and understanding the structure of factorized algorithms.
There are three key ideas:sid the order constraints and error
coefficients can be tracked by operators and expressed di-
rectly in terms of factorization coefficients.sii d By introduc-
ing a suitable representation for the factorization coefficients,
the order constraints and error terms can be solved analyti-
cally. siii d For many purposes, it is sufficient to determine the
error coefficients perturbatively. This last point is especially
important. All previous works on factorization algorithms are
based on exact decompositions. Since this is difficult to do
analytically, one can make little progress except numerically.
This work shows that a leading-order calculation is sufficient
to establish most of the important results we know about
these algorithms. In particular, we have provided a construc-
tive proof of the Shang-Suzuki theorem. Most importantly,
we have shown that in order to have a sixth-order forward
time-step algorithm, one must include the commutator
fVT3Vg in the factorization process.

This work suggests that there is regularity to the existence
of forward algorithms. In order to have only positive time
steps, one must continue to enlarge one’s collection of con-
stituent operators for factorizinge«sT+Vd. For a s2ndth-order
forward algorithm one must include all commutators of the
form fVT2k−1Vg from k=1 to k=n−1, in addition toT andV.
The proof of this general result is currently beyond the scope
of our perturbative approach. Moreover, the massive cancel-
lations that produced the sixth-order results4.37d strongly
suggest that a better formulation, with these cancellations
built in, must be possible. This work suggests that a more
powerful way of understanding the structure of these algo-
rithms is still waiting to be found.

The need to includefVT3Vg makes it difficult to construct,
but may not necessarily preclude the possibility of a sixth-
order forward algorithm. One must seek clever ways of ob-
taining fVT3Vg without computing it directly. Very recently,
Sakkos, Casulleras, and Boronatf27g have reported sixth-
order convergence in calculating the partition function of
quantum-liquid helium by use of a family of fourth-order
algorithms as described in Ref.f10g. Thus it may be difficult
to derive a general sixth-order algorithm, sixth-order conver-
gence is achievable for individual problems by fine tuning
fourth-order forward algorithms.
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APPENDIX: COEFFICIENT OF VTV, VT3V, AND VT5V

There is a systematic way of diagonalizing the sum

Sm = o
i=1

N−1

o
j=i+1

N

vissj − sidmv j

needed in computing the error coefficientseVTmV. The above
is a sum over the upper triangle of aN3N square matrix and
can be denoted more simply aso j.i.

The general form we need to diagonalize is

Ssf,gd = o
j.i

f isgj − gidf j = o
i. j

f jgi f i − o
j.i

f igi f j , sA1d

where we have interchanged the summation indices in the
first term on the right-handside. The key point here is that if
we introduce a new variable

hi = o
j=i

N

f j ,

such thatf i =hi −hi+1, then the second term on the right-hand
side of sA1d is only a single sum. The first term can be
eliminated by completing the “square matrix.” Letoi f igi
=P ando j f j =F be known sums, then

PF = o
i

f igio
j

f j = o
i

f i
2gi + o

i. j

f igi f j + o
j.i

f igi f j .

sA2d

SubtractingsA1d from sA2d gives

PF − Ssf,qd = o
i

f i
2gi + 2o

j.i

f igi f j

= o
i=1

N

gishi − hi+1d2 + 2o
i=1

N

gishi − hi+1dhi+1

= o
i=1

N

gishi
2 − hi+1

2 d = o
i=1

N

¹gihi
2, sA3d

and hence

Ssf,gd = PF − o
i=1

N

¹gihi
2. sA4d

For the case ofm=1, we havef i =vi ,gi =si ,hi =ui ,F=1 from
s2.3d, andP= s 1

2 +eTVd from s2.4d. Therefore, we have

S1 = S1

2
+ eTVD − o

i=1

N

¹siui
2.

Since the coefficient ofVTV is justS1= 1
3! +eVTV, the above is

identical tos2.12d. The use of the more complicated operator
VTV determines the sameeVTV, as it must.
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For m=3, we have

S3 = o
j.1

vissj
3 − si

3dv j − 3o
j.1

visissj − sidsjv j .

Assuming now that all linear constraints onvi are satisfied
up to the relevant order, we have for the first and second term
on the right, respectively,f i =vi ,gi =si

3,hi =ui ,F=1,P= 1
4,

and f i =sivi ,gi =si ,hi =zi ,F= 1
2, andP= 1

3. Hence we have

S3 =
1

4
− o

i=1

N

¹si
3ui

2 − 3S1

6
− o

i=1

N

¹sizi
2D ,

where

zi = o
j=i

N

v jsj .

The coefficient ofVT3V is S3/3!. SincefVT3Vg contains the
operatorVT3V twice, we have

1
6S3 = 1

5! + 2eVT3V,

and therefore

12eVT3V = S3 −
1

20
= 3o

i=1

N

¹sizi
2 − o

i=1

N

¹si
3ui

2 −
3

10
. sA5d

For the casem=5, we have

S5 = o
j.i

vissj
5 − si

5dv j − 5o
j.i

visissj
3 − si

3dsjv j

+ 10o
j.i

visi
2ssj − sidsj

2v j . sA6d

For the first term we havef i =vi ,gi =si
5,hi =ui ,F=1, andP

= 1
6. For the second term we havef i =sivi ,gi =si

3,hi =zi ,F= 1
2,

and P= 1
5. For the third term, we havef i =si

2vi ,gi =si ,hi

=yi ,F= 1
3, andP= 1

4. We, therefore, have

S5 =
1

6
− o

i=1

N

¹si
5ui

2 − 5S 1

10
− o

i=1

N

¹si
3zi

2D
+ 10S 1

12
− o

i=1

N

¹siyi
2D

=
1

2
− o

i=1

N

¹si
5ui

2 + 5o
i=1

N

¹si
3zi

2 − 10o
i=1

N

¹siyi
2,

where

yi = o
j=i

N

v jsj
2.
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