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The solution of many physical evolution equations can be expressed as an exponential of two or more
operators acting on initial data. Accurate solutions can be systematically derived by decomposing the expo-
nential in a product form. For time-reversible equations, such as the Hamilton or the Schroédinger equation, it
is immaterial whether or not the decomposition coefficients are positive. In fact, most symplectic algorithms
for solving classical dynamics contain some negative coefficients. For time-irreversible systems, such as the
Fokker-Planck equation or the quantum statistical propagator, only positive-coefficient decompositions, which
respect the time-irreversibility of the diffusion kernel, can yield practical algorithms. These positive time steps
only, forward decompositions, are a highly effective class of factorization algorithms. This work presents a
framework for understanding the structure of these algorithms. By a suitable representation of the factorization
coefficients, we show that specific error terms and order conditions can be sotaddically. Using this
framework, we can go beyond the Sheng-Suzuki theorem and derive a lower bound for the error coefficient
eytyv- By generalizing the framework perturbatively, we can further prove that it is not possible to have a
sixth-order forward algorithm by including only the commutafTV]=[V,[T,V]]. The pattern of these
higher-order forward algorithms is that in going from tt&n)th to the (2n+2)th order, one must include a
different commutatofVT2""1V] in the decomposition process.
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[. INTRODUCTION positions beyond second order was noted and proved by
Shend 11]. Sheng showed that equations for determining the
third-order coefficients irf1.3) are incompatible if the coef-
ficients{t;,v;} are assumed to be positive. This is a valuable
demonstration, but it shed no light on the cause of this in-
IW compatibility nor offered clues on how to overcome this de-
i (T+Vw, (1.D)  ficiency. Suzuk{12] later proved that the incompatibility can
be viewed more geometrically. His proof tracked the coeffi-
whereT andV are noncommuting operators. Such an equacients of the operatof TV andTVVin the product expansion
tion can be solved iteratively via of (1.3). If the expansion were correct to third order, then the
Wit + €)= e TVn(t), (1.2 coefficients for both operators must @\a The coefficient
condition for one corresponds to a hyperplane and the other,
provided that one has a suitable approximation for the sho@ hypersphere. Suzuki then went on to show that for the
time evolution operatoes™V), Usually,e™ ande? can be same set of positive coefficients, the hyperplane cannot in-
solved exactly. By factorizing“™" to higher order in the tersect the hypersphere and, therefore, no real solution is
form possible.
The product form(1.3) has the general expansion

Many physical evolution equations, from classical me-
chanics [1-4], electrodynamicg[5], statistical mechanics
[6,7] to quantum mechanid8—10], all have the form

N

e5(T+\/) — H eti eTeviEV, (13) N
i=1 [T eieTeV = explersT + eyeV + eryeT,V]
i=1
one can solvg1l.l) accurately with excellent conservation 5 5
properties. Classically, each factorizatiéh3 produces a +erne T[T VI +emne’ V[T V] +--)
symplectic integratgrwhich exactly conserves all Poincaré = geHale) (1.4)

invariants. A vast literatur¢1-3] exists on producing sym-
plectic integrators of the forni1.3). Once a factorization Where the last equality defines the approximate Hamiltonian
scheme is derived, it can be implemented specifically tef the product decomposition. The goal of factorization is to
solve any particular evolution equation of the fofind). keeper=e,=1 and forces all other error coefficients, such as
However, as one examines these factorization schemev,€rrv.eyrv: €tC., to zero. By tracing the incompatibility
more closely, one is immediately struck by the fact that becondition to error coefficients of specific operators, one can
yond second order, all such schemes contain some negatiiéentify which error term cannot be made to vanish. The
coefficients[1-3] t; andv;. Since the fundamental diffusion operatorTTV can only occur ifT,[T,V]] andTVV only in
kernel cannot be simulated or integrated backward in time[V,[T,V]]. Thus the incompatibility condition is equivalent
none of these higher-order schemes can be applid¢iin®  to the fact that for positive coefficien{§,v;}, erry andeyry
irreversiblesystems. This lack of positive-coefficient decom- cannot both be reduced to zero. To circumvent this, it is
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sufficient to force one error coefficient to zero and keep théhow to reduce a general quadratic error coefficient to a mul-
other commutator in the factorization process. Since in quantidiagonal form.

tum mechanicqV,[T,V]] corresponds to a local function,

just like the potential, Suzukil3] suggested that one should

factorizee™V) in terms ofT,V, and[V,[T,V]]. Following II. ACONSTRUCTIVE PROOF OF THE SHENG-SUZUKI

up on this suggestion, Suzukl4] and Chin[15] have de- THEOREM

rived fourth-order factorization algorithms with only positive  |n suzuki's proof[ 12], without explicitly computingerry
coefficients. Chin [15] also showed that, classically, ande,y, he showed that both cannot be zero. Here, we show
[V,[T,V]] give rises to a force gradient exactly as first sug-ihat by enforcingery=0 and e;ry=0, we can compute a
gested by Ruth16]. Chin and collaborators have since abun-jower bound fore,r, analytically and show that it cannot
dantly demonstrated the efficiency of these forward time-steganish for a set of positiv;}. This determination of a lower
algorithms in solving both time-irreversiblgl7—20 and  pound for ey, goes beyond the Sheng-Suzuki theorem in
time-reversible[4,9,10,1 dynamical problems. Janet al.  providing a more detailed understanding of all fourth-order
[21] have used these forward factorization schemes in doingyrward algroithms.

quantum statistical calculations and Omelyatnal. [22,23 The first step of our approach is to compute the error
have produced an extensive collection of higher-order algogoefficientsery, erry, 81y €tc., in terms of the factorization

rithms (but with negative coefficientsased on this class of coefficients{t;,v;}. This can be done as follows. The left-
fourth-order forward algorithms. Moreover, they have shownhang side of1.4) can be expanded as

that many higher-order algorithms can be derived much more

economically with the inclusion of the commutator N N

V[TV, y etiTeev1V. .. getnTgeonY = 1 +g(2 ti)T+ 8(2 Ui>V+ .
An important question, therefore, arises: with the inclu- =1 =1

sion of the operatofV,[T,V]], can one produce forward (2.9

algorithms of sixth or higher order? It has been known forFixing er=e,=1, the right-hand side dfL.4) can likewise be

some time, from our own work10], from the extensive expanded '

search of higher-order algorithms by Omelyatnal. [22,23

and that of Blanes and Casg24], that the answer is prob- M) =1 +5(T+V) + %82(T+V)2+ g%en[T,V]

ably no. If such a sixth-order algorithm existed, we would 3 3

have found it by now. What is lacking is a proof similar to +eeynd V[TVl + e%ern( T[T, V]]

Suzuki's, pointing out the key impediment and explaining +1e3er /(T +V)[T,V]+[T,VI(T+V)}

this lack of success. In this work, we show that for a sixth- L

order decomposition with positive coefficients, it is the com- +583(T+V)3+ oo (2.2

mutator[V,[T_,[T,[T,V]]]] that cannot be ’T‘ade to vanish Matching the first-order terms in gives the primary con-
and must be included. In order to prove this result we havestraints

developed a formalism to analyze the structure of these for-

ward factorization schemes. By use of a suitable representa- N N

tion of the factorization coefficients, we show that linear or- E =1 andE vi=1. (2.3
der conditions and quadratic error terms can both be solved i=1 i=1

analytically. The resulting error term then makes it obvious 14 getermine the other error coefficients, we focus on a par-
that it cannot vanish if the factorization coefficients areicyar operator in2.2) whose coefficient contairs, ey,
purely positive. By use of this formalism we can go beyondq o . and match that operator’s coefficients in the expan-
the Sheng-Suzuki theorem and derive a lower bound for thgjon of (2.1). For example, in the? terms of(2.2), the co-
magnitude of the error coefficiertry. By generalizing the eficient of the operatoVis (2 +er). Equating this to the
method to sixth order, we further prove the main result as.,qfficients ofTV from (2.1) gives
stated above. This analytical method of solving the order
conditions will allow us to analyze and classify factorization 1 N
algorithms in general. Sten= > s, (2.9

In Sec. Il we introduce our notations and illustrate our i=1
method of solving the order condition analytically by giving where we have introduced the variable
a constructive proof of the Sheng-Suzuki theorem. In Sec. .
[1l, we discuss the conditions necessary for a sixth-order for- :
ward algorithm. In Sec. IV we introduce a perturbative ap- S =Z . (2.9
proach to study the sixth-order case and show that it is not )=
possible to have a forward sixth-order algorithm by includ-Alternatively, the same coefficient can also be expressed as
ing only the commutatoV,[T,V]]. In Sec. V we discuss the \
pattern of higher-order forward algorithms. In Sec. VI, we 1 _
assess the feasibility of implementing sixth order algorithms. 2 *evr= 2 G,
In Sec. VII, we summarize our conclusions and suggest di-
rections for future research. The Appendix contains details ofvhere

(2.6)
i=1
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N N
=3, 2.7 > vsu=3, (2.19
j=i i=1

It turns out thats; andu; are our fundamental variables, the

N
coefficientst; andv; are backwardand forward finite differ- 1
ences ofs andu;, ;1 Vs = 3’ (2.16
ti=s-s.1=Vs, vi=u-u.,=-Vu. (2.8 a5 constraints ofu)} for given a set ofit;} coefficients. For
The results(2.4) and (2.6) are equivalent by virtue of the POSitive {tj}, the right-hand side of2.12 is a positive-
“partial summation” identity definite quadratic form in;. Its lower bound can be deter-

mined by the method of constrained minimization using
Lagrange multipliers. Minimizing

18 N 1 N 1
F=>2 Vs’ - 7\1(2 Vs - —) - AZ<E sy - —)
2 i=1 2 i=1 3

i=1

N N
> Vsu =- > sAu. (2.9
i=1 i=1

(Note thatsy=0 anduy,;=0.) In the following, we will use
the backward finite difference operator extensively:

(2.17
Vs'=g'-5',, (2.10 gives
with property
Vs v
N Ui =>\1_S "')\2_SIZ =M tha(s+so). (218
Vs Vs
2 Ve'=g=1. . :
i=1 Imposing(2.15 and(2.16) determines\; and\,,
Matching the coefficients of operatof9VandTVV gives N+ A= % (2.19
11 1 1 L
§+§eTv+eTTv=§2 ﬁzviziz vsu, (211 AtAtgh =3, (2.20
. i=1 i=1
| | whereg defined by
N
1 1 1 R 2
=+ Zery—err=->, Vsul. 2.12 A A T
30 2eTV ervr 22‘1 Sy ( ) z Vs =1+g, (2.21)
The error coefficiengyry can be tracked directly by the op- s given by
eratorVTV. The coefficient for the operatMTVis quadratic N
in v; but not diagonal. This is more difficult to deal with than :
TVVs coefficient. Nevertheless, we show in the Appendix 9‘2 §5-1(8 ~S-0)- (2.22
that VTVs coefficient can be diagonalized by a systematic =t
procedure to yield the same constraint equatiol2akd). By substituting inssi_; =[§°+5”,— (S —S-1)?]/2, one discov-
In order to have a fourth-order algorithm, aside from theers that
primary constraintg2.3), one must requiren,=0,er,=0, 11
and e,1,=0. For a symmetric product form such that0 g9=-39+3(1-49),
and Ui:UN—i+lati+l:tN—i+11 or UN:O and Vi =UN-j ’ti:tN—i+11 and therefore
one has
N
& —€ E E) — 1
g eHAeIgeHale) = 7 | (2.13 g=§(1—5g), wheresg= >, t2. (2.23
i=1

This implies thatH,(g) must be an even function ef, and
ery=0 is automatic. The vanishing of all odd order errors inThe factoré is the continuum limit(N— ) of g when the

Ha(e) implies that we must have sum is replaced by the integrdfs’ds The evaluation of
N general sums of the forn2.22 will be further discussed

1 S vy = 1 (2.14 below. This exact form fog obviated the need to determine

(2n-1)!i5 @2n)’ ' g's upper bound as it is done originally in the work of Suzuki

) - ) o [12], and in the more recent work on symplectic correctors
ensuring thaf“"*V has the correct expansion coefficient. It [7) \with A, and\, known, the minimium ofF is given by
is cumbersome to deal with symmetric coefficients directly;

it is much easier to use the general fofin3) and to invoke 1 , 1 -, 1 1 1 1 &g
. AT F=oO\+X)+ ZONs=—+ =<+ — ,
(2.14 when symmetric factorization is assumed. 2 2 4 729 6 24(1-659)
The next step in our strategy is to compute a lower bound (2.24)
for the magnitude ofe,r, after satisfying constraintsry, '
=0 ande;ry=0. We view the latter two constraints and therefore
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o= - 1 & . (2.25 Vi, =[V,[T,V]]. (3.2
24(1 - &9) Consider now the case=2. In the following discussion,
This implies that, firste 7, must be negative. Second, its We Will use the condensed bracket notatiof\/*T°V]
magnitude is =[V,[V,[T,[T,[T,VI]]]], etc. We have shown in Sec. Il
that, for positivet;, with u; satisfying constraint$2.15 and
ey = 1 & _ (2.26 (2.16, we can factorize*™V) up to the form
24(1-59)

N

The Sheng-Suzuki theorem now follows as a simple corol] | elicTevieV

lary. If all the t;’s are positive, therg, 1y cannot vanish be- =1

cause its lower boun(.26), which depends oig as given 4

by (2.23, cannot vanish. The only way to achieve a fourth- exp[s(T+ V+eneVTV] + %> eQ + 0(86))] ,
order forward algorithm is to keep the commutator i=1

[V,[T,V]] with coefficiente,ty, but move it to the left-hand (3.2
side of(1.4). This means that for all such fourth-order algo- '
rithms, the sum of factorization coefficients of all the wheree,r, cannot be made to vanish, aqy are four inde-
[V,[T,V]] terms must be positive. All such fourth-order al- pendent operators described below. There is one error opera-
gorithms are characterized by their respective values,af  tor [TV] in first order; two error operatord,TTV] and

and how well they saturate the lower boui226). Note that [VTV], in second order; four operators,
in deriving this lower bound, we did not need to incorporate[ TTTV],[VTTV],[TVTV], and[VVTV], in third order; and
the primary constraints; =1. eight operators, [TTTTM,[VTTTV,[TVTTV],[VVTTV,

A very different “elementary” proof of the Sheng-Su_zuki [TTVTM,[VTVT\,[TVVTV], and[VVVTV, in fourth or-
result has been offered by Blanes and @ Our work is  der. These error operators are results of concatenatad
more precise in demonstrating that, not only @&#y not v with lower-order operators on the left. In each order, not
vanish, it has a lower boun@.26) determined only by{t}.  a|| the operators are independent. For example, seffing

Note also thab;=u;-u;,; and(2.18 implies that =[AB] in the Jacobi identity
1(+t¢
0= A8 = 1) = Eﬁ' (2.29 [ABC] +[BCA] +[CAB] = 0,
ives[ABC]=[BAC] and therefore
Thus, if one insists thag v be zero, thensg can be zero g ! 1=l 1

only if at least onet; is negative such thaft;+t,;) or (t [ABAB| =[BAAB].

+1;_1) remains negative. Equatid@.27) then implies that its

adjacent values of; or v;_; must also be negative. Thus a For the case wherfVTV] commutes withV we also have
fourth-order factorization without keeping any additional op-[V"VTV]=0. Hence there are only two independent operators
erator, such agV,[T,V]], must have at least one pair of [TTTV],[TVTV] in third order and four operators
negativet; v; coefficients. This result was first proved by [TTTTV,[VTTTV,[TTVTV,[VTVTV in fourth order. The
Goldman and Kapd25]. This simpler proof follows the idea last two are jusfTTV;] and[VTV,], which resemble second-

of Blanes and Casf24]. order errors for a new potentidl;. To have a sixth-order
algorithm, one must eliminate these four error terms. Since
IIl. THE SIXTH-ORDER CASE [TTVy] and [VTV4] are linear inV,, they can always be

By incorporating the potential-like operat¢¥,[T,V]],  eliminated by including a sufficient number ¥f operators
many families10,22,23 of fourth-order forward algorithms  in the factorization process. The remaining error tefify/]
have been found. They are not only indispensable for solving@nd[VT®V] are unaffected by; and canonly be eliminated
time-irreversible problem§17-2Q; but they are also supe- by the choice of coefficien{$;,v;}. Thus we can apply our
rior to existing fourth-order algorithms in solving time- previous strategy of dealingnly with coefficients{t;,v;} but
reversible classicd¥,15,22,23 and quantunj9,10] dynami-  now computing the error coefficiemt/ s, explicitly.
cal problems. It is therefore of great interest to determine A careful reexamination of our proof for the Sheng-
whether there exist practical forward algorithms of evenSuzuki theorem shows that we have proved more than that is
higher order. We show in this section that sixth-order for-required. The minimization procedure produces a lower
ward algorithms requires the inclusion of the commutatorbound fore,r,, Whereas the Sheng-Suzuki theorem only re-
[V,[T,[T,[T,V]]]]. The inclusion of [V,[T,V]], which quires thate,r, not be zero. The expansioi2.19 merely
makes possible fourth-order forward algorithms, is insuffi-served as a vehicle for demonstrating that, for my satis-
cient to guarantee a sixth-order forward algorithm. In gen{ying (2.15 and(2.16), ety cannot vanish for positivét;}.
eral, if Fo(e) is a 2th order forward decomposition of We do not really need to minimize anything or to determine
&™) thenF,,.,(e) would require the inclusion of a new an actual lower bound. This suggests a simple strategy for
operator not previously included in the construction ofproving the sixth-order case. It is sufficient to show that
Fon(e). We have proved the case of1 in Sec. Il. The new ey3y cannot vanish for any set diu}, satisfying higher-
operator is order constraints.
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IV. PROVING THE SIXTH-ORDER CASE

As discussed in Sec. lll, for a sixth-order algorithm, a

symmetric factorization must satisfy, in addition (.15
and(2.16), the constraint2.14 for n=2,

(4.2

N
2 Vsl ==
i-1

Also, since the operatd*V uniquely tracks the commutator
[T4V], the error coefficieners, will vanish if the expansion
coefficient of T*V is 2. This means that factorization coeffi-
cients{t;,v;} must also obey

N
2 Vsly=¢
i=1

(4.2

These four constraint®.15), (2.16), (4.1), and(4.2) can be
satisfied by the expansion,

\Y Vsﬂ3 vs!
S P e Viems 4.3
1+ Aags Fhagg Thayg (4.3

We must now demonstrate that in this caeg, cannot
vanish if {t;} are all positive. Whenj; is expanded vid4.3),
the four constraint$2.15), (2.16), (4.1), and (4.2) produce
the following set of four linear equations fon=1 to 4,

4
G = . 4.4
2 Grn= {77 (4.9
The matrixG,,, is given by
N N — —
Vsimvsiﬂ V m lV 1
SIS SREALEFIS PRRLAL s
i=1 i=1 S
(4.5
where we have used the identity
Vsmvsn - Vﬁm_l Sn—l
——— =V ligs  ———— 4.6
Vs s SiSi-1 Vs (4.6)

to define the reduced symmetric matrgg,, Since Gy,

=G =1 (and, henceg;,=9,,=0), we can subtract the first

constraint equation
)\1+)\2+)\3+)\4:%

(4.7

from the other three and reduce the system down to three

equations fom=2 to 4,

1 1
m+1 2

E Omhn = (4.9

n=2

By wrmng S=S-12t5 Vsi and §_1=S-1/— ZVs where
S_10= 2(si +s_4), we can systematically expand

PHYSICAL REVIEW E 71, 016703(2005
1 n 1 n
Vs'= (3—1/2*' EVS) - <5i—1/2_ EV5i>

_SZ(VS)g

n!
AV SHWSR”

1'(n 1)!
+ e,

When each summaits"Vs'/ Vs is expanded and compared
with the similarly expanded integral

mn Vsm+n—1

S
f mné™2ds= ————
Sy m+n-1

we deduce that

mn 1
=—-—mnim-1)(n-1
m+n-1 12 n 4 )

mn~—

N
2 Sln-‘r;r/]2_4(VS)3 + A52 SEZ?E(S(VS)S +oeee
=1 i=1
(4.9
with
A= ﬁ[(m+ n-4)2+(m-2)(2m-7)+(n-2)(2n-7)].

The constant part of the matrix is the continuum lir(it
— o) of the sum, which is the integral

1
mn
J mnd™n2ds= ———,
0 m+n-1

We will denote this constant part of the matnx @S, The
corresponding continuum part @f,, is gmn-G —-1. The
remaining finite parts o6,,,in (4.9), which depends explic-
itly on s, will be denoted asiG,,,,. Sinceg,,, differs from
G only by a constant, its finite pafg,,,, is the same as that
of Gy i-€., gmn=Gm By repeated applications of the
identity (4.6), one can reducg,,, to a sum of terms of the
form

N
w(l,n) = 2 (s5-0)'VS". (4.10
i=1

Since the explicit form 08, is known via(4.9), these func-
tions are not particularly useful as calculational tools. How-
ever, they are very useful in quickly identifying the matrix
element ofg,,, when doing analytical calculations. For later
reference, we list somg,,,s in terms of(l,n) as follows:

922=«(1,1),

U23= (1,2,

U24=(1,3),
0s2= k(1,3 + k(2,1),

O33= «(1,4) + «(2,2),
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O34= «(1,5) + «(2,3) + «(1,3). (4.11) 1 1 11 1 1
4 22622‘5592225‘25922 5*‘1_259 (4.18
Note thatg,, is the g function of the last section. From the
general formula4.9), one finds indeed tha;gzzf—l3 and This then implies that
18 1
=- =3 (Vs)3=-=49. 4.1 = t2. 4.19
82= = 32 (V5)*= - 3% (4.12 evrv= 2421 (4.19
If we only keep the continuum matrigd) in (4.8) The first key observation is Eq4.17); to leading order in

8., this quadratic form only depends on the first two con-

% % ?3; A2 ‘% straints ondu;. Its leading finite part is unchanged by addi-
% ‘g‘ 1| ns|= _% ’ tional, higher-order constraints ofu;; that is, éu; can be

3 AW 3 very general. By inspectiorg,ty above cannot vanish for

s 17 4 T 10 positive {t;}. Thus this leading-order calculation, while not

sufficient to determine the exact lower bound &, is
sufficient to show thag, 1y cannot vanish, and thus proves
the Sheng-Suzuki theorem.

Second, iféu; were to be represented as

the solution is trivial?\2=—% ,A3=0,N\,=0. This suggests that
we should also expand eagshinto its continuum and finite
part: )\2=—%+5)\2,)\3=5)\3,)\4=5}\4. For our purpose, it is
enough to keep the leading finite-size correction term, i.e.,

we can neglect the terms of the forég,,,,O\. In this case, Vs vs? Vs

we just have 5ui:5)\2<v—$—1> +5}\3<V_3_1> +5)\4(V—S—1),
L g (o) (b (4.20
5 8 1 ong|=] 500 | (4.13  then in order for the constraintd.16) to determines\, to
g 1 g SNy %5924 the same leading order ifg,, as in(4.13), it is enough to

compute only the constaritontinuum part of any sums
We do not need to solve ead, explicitly; we only need to  multiplying é\,. This implies that we may replace any such
know that they are proportional tég,,. Since\;+\,+\;  sum by its integral or by any other sum having the same

+)\4=%, this also implies thak,=1+6\; with integral. Thus for any sum multiplyingu;, we may replace it
by another sum having the same integrahis crucial sim-
ONg+ SNy + ONg+ SN, =0. (4.14) plification makes it unnecessary to solve for eaghexplic-

. : itly.
The_abo_ve dlsc_ussmn suggests that one should also Sepa)'/To compute the error coefficie®,s,, one must use an
ratey; into its continuum and finite parts, s

operator that tracks the commutafdrT3V] uniquely. The
analogous operatdPV?, whose expansion coefficient is easy
={1- ——) + Ou;. (4.15 to compute, is no longer suitable. L&ts,2 denote its expan-
i sion coefficient in terms oft;,v;} from the left-hand side of
(3.2). By matching the same operator’s expansion coefficient

The constraints om; now translate into constraints afy; from the right-hand side, one findg6]

% vY'su 1 % v ( VSZ) Cravz = 5 — 318v7v— ErayTy = Byrdy (4.21
P = - l-—— T 5 3 : :
i=1 T i=1 k 2Vs

It is difficult to disentanglee s, from the contaminating
1 (. }G _1, 419 cffects ofeyry and eryry. The three operators that track
“n+1 2" 5 Oon- (4.1 [VT3V] uniquely areVT3V,VT?VT, and TVT?V. We choose
the symmetric choic& T3V, whose coefficient is related to
Recall that sinceg;,=g,=0, we also havesg,=389:,=0.  eyqsy by
The above constraints fofu, are exact. We have not yet

invoked any particular representation féu. Cyey = é + 2873y (4.22
To illustrate how this formalism will be used, let us re- _
compute the quadratic form of the last section From the left-hand side dB.2), one deduces
N N L
1Vs 2
Vsui=>V (1_——).“31} Cypy=— Evz(s s)%; (4.23
2 Vs § 3{ 2¥s | AT B
st SZ ) This quadratic form idv;} is difficult to work with because
4 v 22 Vsou; - 2 Vs’ou +0(8u) it is not diagonal in; or some other variable. In the Appen-
=1 =1 =1 dix, we show that it can be simplified to the following bidi-

(4.17 agonal form,
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CVT3V__<32 VSZ‘Z EV%U _Z>, (424)
wherez is defined by
N
j=i

The required coefficiend, s, can now be computed from

T3V_1—2<32vs;2 szu ——). (4.26)

i=1

The quadratic form involvinggji is

2 N N
E vsiu? = E Vs (1 ——V—Zz) +2>, Vsiou; - 22 Vs'ay;
i=1 i=1

+0(8u?) (4.27
3 1 3
=Z =Gyt Z(Ga3+ Gag) + 8923~ 25924
1 1
=10 45933 5924- (4.28

In (4.27), we have replaced the sum involvings’Vs?/ Vs,
by its integral equivalen%st. Also, we have used the iden-

tity
Vs’ (stst) _Vsvs . VsV
Vs \ Vs Vs Vs
Given the expansio.3) for u;, we can deduce the cor-

responding expansion f@. From (4.25, we can rewritez,
as

(4.29

Z=\

=
Y]
+

I
>
=]

_(S”‘l+3-1vvs’: )s +(1 —&?)]
:)\n_l +33_1Vj; ]

Hence corresponding t@.3), z has the expansion

(4.30

Vs
Z=N+N(1+sS-p) A5 1 +ssi-1v—s

Vs3>
Nl LHsS— . 4.3

4( SS; 1VS (4.3)
One can check that this form fa satisfies the four con-
straints (2.19, (2.16), (4.1), and (4.2 when they are ex-
pressed in terms of

PHYSICAL REVIEW E 71, 016703(2005

2= N+ A+ g+ A= 3,

and form=1 to 3,

(4.32

The identity(4.6) is needed to show thé&4.32) is equivalent
to the last three constraint equations €nrAs in the case of
u;, we can writez in the form

=3(1 =580 + 3 (4.33
and transfer the last three constraintszoto 6z,
" 1
2 VS5 =  oan (4.34
i=

The quadratic form fog; is then

N 1 N N
> VsZ= ZE Vs(1-s5-1)%+ 2 V57
i=1 i=1 i=1

N
- 2 Vs(s8-05 +0(57)

1 1 1
=5 oKL+ K(z 1)+25922——2Vsaz
1 1 1 1
= Z E Ooot — (933 O2a) + 25922_ 65924
2 1 5
= 1_5 :15933 25924- (4.39

We have again replaced the sum involvi¥ig(sss_;) by its
integral equivalenést’ and used4.1]) to express the re-
quired sum in terms of,,s. Thus the bidiagonal form is

32 Vsz - E vsiui=— + (25933 36924) -

From (4.9) we find

Q33 =~ 32 32 1/2(V$)3 - _2 (Vs)®,

N
824= = 22§ 12(VS)° - E(Vs)S (4.36
i=1 10| 1
and therefore, finally,
S=—> ¢ 4.3
evroy = 24021( s) 24021 (4.37

This is remarkably similar t¢4.19. Thus if{t;} are all posi-
tive, thene, s, cannot vanish. No sixth-order positive factor-

ization scheme is possible without including the commutator

V5=[VT3V].
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V. BEYOND SIXTH ORDER Uo:%—%\@ n=- 2116@ Uzzz—io‘ﬁé,
In Sec. Il, we have shown that in order to have a fourth- (6.3
order forward algorithm, one must include the commutator
V;=[VTV] in the factorization process. In Sec. IV, we have and
proved that in order to have a sixth-order forward algorithm e
one must include, in addition t&%;, the commutatorV, Wi = = 5950 - (6.9

=[VT3V]. By repeating the same argument, it is not difficult o o )
to discern the pattern of higher-order forward algorithms. In!he coefficient of TTV] can be eliminated more simply by

going from the(2n)th to the(2n+2)th order, one must add a an additionalv,. In this case, we can minimize the coeffi-
new commutator cientw; neart,=1/5, yielding

Vo1 =[VT?V] (e = - o0V +e2UoVy) geti Tee(vg Ve upVy)
to the factorization process. A proof of this general result is a X @2 TgrvaV+eUpVy) ge WiV (6.5)
straightforward generalization of our approach in Sec. 1V, but
technically much more involved. For example, to prove the s 125 N 3 .

i - i i - = = a5 e L=, =%, (6.6
eighth-order case, we must traelgs, uniquely via the op Vo=27 Vi=a3» V271 U~100 275
eratorVT®V's coefficient given byS;/5!, whereS;, as shown
in the Appendix, is tridi nal i, z, an — 3121 _ 1145 _ 409 __ 1

e Appendix, is tridiagonal imi, 7, and Uo= 710720 YW1~ 2737152 Y27 1520690 W1~ ~ 2ma720

(6.7)

Since the factorization is symmetric, we only listed operators

N
yi=2vjs-
j=i

One then has to work out the expansion ypas in the case
of z. Moreover, since,sy is anticipated to be=,(Vs)?,
one can no longer ignore the contribution of ordéu;)?

from the center to the right.
Fourth-order forward algorithms are practical because it is
relatively easy to comput&/;. For the standard classical

«[=N,(Vs)®2 Thus the current formalism, while powerful Hamiltonian

in determininge, 1y variationally ande, s, perturbatively, is
too demanding for the general case. To prove such a general
result, one must find a less explicit approach. the operatord andV are just

H=3pip +U(G),

VI. SIXTH-ORDER ALGORITHMS

Jd J
T=p—andV=F—,
d 0 ap;

Now that the pattern of higher-order forward factoriza- !

tions is known, we will consider the practical issue of whereF,=-U,=-dU/dq;. The commutatol/; is simply
whether a sixth-order algorithm is implementable. Just as we
have denoted the factorization coefficients associated With
andV ast; andv;, we will denote in this section, the coeffi-
cients associated with commutatdy and V5 by u; andw;.

For a symmetric sixth-order algorithm, we must satisfy theSince this is just like the operatdfrwith a modified force, it
two primary constraint$2.3), the vanishing of the error co- can simply be combined witl. By contrast,V; is of the
efficients of two second-order commutatdrs and [TTV], form

and four fourth-order commutator§ TTTTV],[VTTTV],
[TTV;], and [VTV,]. Because the error coefficients for
V., [TTV;], and[VTV,] are linear iny;, they can always be
forced to zero by threg;'s. Likewise, sincd TTTTV] is lin-

ear inv;, its coefficient can be made zero and the primary
constraint be satisfied with twg’s. The primary constraint  and is more complicated than the original operator problem
ont; and the quadratic constraint grdue to[TTV] can also  T+V we seek to solve. Thus in most cases, it seems difficult
be satisfied with tway’s. Thus a minimal sixth-order forward to implement a general sixth-order forward algorithm. This
algorithm is would make fourth-order forward algorithms unique. There
are no easy higher generalizations. However, before we dis-
miss sixth-order algorithms out of hand, we note that for the
harmonic oscillator,V3=0 and sixth-order forward algo-
rithms certainly exist[For the harmonic oscillator, there are

J J
V]_ = [VT\/] = ZUIU”(?_pJ = V](F|FI)O.,_pJ

V3 =[VTV] = 3p;p;(U Ui + Uy U )i—fsp-u-u-- 2
3 (L A e 1119 lij Y1k l?pk (g |]kaqk

(6.8

7'('6?)(6) = eSSW1V3e£u2V1e£t2Te£(U1V+82u1Vl)e£tlT

X es(UOV+82u0V1) estlTes(v 1V+£2U1V1) estzTesu2V1e85W1V3

(6.2) many sixth-order forward algorithms much simpler than
with (6.1).] Second, there may be ways of constructing the com-
mutator V5 indirectly rather than by direct evaluation. For
Vo= ‘5‘, V= % =3\ g t,=3- %\E (6.2  example, the commutator
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coefficientst; in this approximation must be negative, how-

ever, because they are of orde€rand can be combined ju-  APPENDIX: COEFFICIENT OF VTV, VT3V, AND VT?V
diciously with existing operatol of ordere such that the
overall coefficient of theT operator is positive for suffi-

9

There is a systematic way of diagonalizing the sum

ciently smalle. There may exist similar ways of approximat- N1 N
ing & ™1Vs. Thus until a simpler way of evaluatings is S = E E vi(s; —$)";
found, fourth-order algorithms are the only higher-order =1 =i+t
practical forward algorithms. needed in computing the error coefficiee{gm,. The above
is a sum over the upper triangle of\ax N square matrix and
VII. CONCLUSIONS can be denoted more simply &5.;.

In this work, we have presented a framework for analyz- The general form we need to diagonalize is

ing and understanding the structure of factorized algorithms. - (0 — ) f. = N s
There are three key idea§) the order constraints and error Sto) E fi(g; ~9)f; z figf E figif,  (AL)
coefficients can be tracked by operators and expressed di- ] S ]
rectly in terms of factorization coefficientéi) By introduc- ~ Where we have interchanged the summation indices in the
ing a suitable representation for the factorization coefficientsfi'St term on the right-handside. The key point here is that if
the order constraints and error terms can be solved analytWe infroduce a new variable
cally. (iii ) For many purposes, it is sufficient to determine the N
error coefficients perturbatively. This last point is especially h = > f;,
important. All previous works on factorization algorithms are j=i
based on exact decompositions. Since this is difficult to do _ .
analytically, one can make little progress except numerically.s.lélCh t?ag\il_ hi_h”ll’ then_th? second_lt_ﬁrmf_on the rlght-hatr;d
This work shows that a leading-order calculation is sufficientS'I. €o t( d )b IS only Iat_smgtﬁ S},Jm' € 'r?t. t?rnc cfan €
to establish most of the important results we know abouf ;:mm?j; ¢ _yF cborr|1(pe ing the ?guare matrix.” L&tfig
these algorithms. In particular, we have provided a construc- andz;l;=F be known sums, then
tive proof of the Shang-Suzuki theorem. Most importantly, PF= fig> f, => g+ >, figif, +> figif;.
we have shown that in order to have a sixth-order forward i i i i>] i>i
time-step algorithm, one must include the commutator (A2)
[VT3V] in the factorization process.

This work suggests that there is regularity to the existenc&ubtracting(Al) from (A2) gives
of forward algorithms. In order to have only positive time ’
steps, one must continue to enlarge one’s collection of con-  PF— S(f,a) =2 fig + 2 figf,
stituent operators for factorizing™"). For a(2n)th-order ! 1=
forward algorithm one must include all commutators of the N N
form [VT21] from k=1 tok=n-1, in addition toT andV. = > gi(h = hiep)?+ 22 gi(hy = his)hisg
The proof of this general result is currently beyond the scope =1 =1
of our perturbative approach. Moreover, the massive cancel- N N
lations that produced the sixth-order res(#t37 strongly = > g(h?-h%,) =, Vgh?, (A3)
suggest that a better formulation, with these cancellations i=1 i=1
built in, must be possible. This work suggests that a MOre,nq hence
powerful way of understanding the structure of these algo-
rithms is still waiting to be found. 5

The need to includBvT3V] makes it difficult to construct, S(f,g) = PF- 2 Vgih!. (A4)
but may not necessarily preclude the possibility of a sixth- =1
order forward algorithm. One must seek clever ways of ob+or the case ofn=1, we havef,=v;,g;=s,hj=u;,F=1 from
taining [VT®V] without computing it directly. Very recently, (2.3), and p:(%+ew) from (2.4). Therefore, we have
Sakkos, Casulleras, and Bororj2f7] have reported sixth- N
order convergence in calculating the partition function of (1 5
quantum-liquid helium by use of a family of fourth-order S1= (E +eTV) —iZleui :
algorithms as described in R¢f.0]. Thus it may be difficult B
to derive a general sixth-order algorithm, sixth-order converSince the coefficient 0/ TVis just81=%+evw, the above is
gence is achievable for individual problems by fine tuningidentical to(2.12). The use of the more complicated operator
fourth-order forward algorithms. VTV determines the sanm&,, as it must.

N
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Form=3, we have For the casen=5, we have
S3= 2 vi(S’ - Hv; - 32 visi(sj— S)spp. S=2 (S - $)vj - 52 vis (S - S)s;
j>1 i>1 j>i j>i
Assuming now that all linear constraints opare satisfied +10> Ui3|2(sj —s)s-zvj. (A6)
up to the relevant order, we have for the first and second term j>i

on the right, respectlvelyfzu,,g, 5‘1 h=u;,F=1 P_Z-

andf=sv;.g=s,h=2, F—E: andP—— Hence we have For the first term we havé=v;,qg;= 3 h,= u,,F 1, andP

. For the second term we haVve=sv;,g;= si hi=z, F—E,

1 2o 1 and P=:. For the third term, we havd S|zv|,g| s.h
5= Z“E Vsiui-3 E—E vsZ |, yl,F—g, andP=3. We, therefore, have
i=1 i=1
1
where S:,:——EVSU -5 sziszz
N 6 o i=1
Z = 2 UJ'S]'. 1 N

3 +10| - 2 Vsy?

12 i :

The coefficient oV T3V is S;/3!. Since[VT3V] contains the
operatorVT3V twice, we have

N N N
1
=" 2 VU2 + 5 V72 - 102, Vsy?,
i=1 i=1 i=1

633 5 * 28y,
and therefore where
N
12673y = %__:32 VsZ - 2 Vs u?— —. (A5) yi= 208
i=1 j=i
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